Limit Properties of Folded Sums of Chaotic Trajectories
نویسندگان
چکیده
We investigate the statistical properties of a process defined by summing the subsequent values assumed by the state of a chaotic map, and by constraining the result within a finite domain by means of a folding operation. It is found that the limit distribution is always uniform regardless of the chaotic map, that the folded sums tend to be independent of the future evolution of the chaotic trajectory, and that, whenever the map state is multidimensional, the folded sum vectors tend to be made of independent components. Numerical simulations are employed to show that practical finite-time behaviors are correctly approximated by the limit results herein provided. Finally, the theory is applied to give a formal ground to some key steps in the derivation of the spectrum of signals that are chaotically frequency modulated.
منابع مشابه
Ju l 2 00 9 Central Limit behavior in the Kuramoto model at the ’ Edge of Chaos ’
We study the relationship between chaotic behavior and the Central Limit Theorem (CLT) in the Kuramoto model. We calculate sums of angles at equidistant times along deterministic trajectories of single oscillators and we show that, when chaos is sufficiently strong , the Pdfs of the sums tend to a Gaussian, consistently with the standard CLT. On the other hand, when the system is at the ”edge o...
متن کاملCentral Limit Violation in the Kuramoto model at the ’Edge of Chaos’
We study the relationship between chaotic behavior and the violation of the Central Limit Theorem (CLT) in the Kuramoto model. We calculate sums of angles at equidistant times along deterministic trajectories of single oscillators and we show that, when chaos is sufficiently strong , the Pdfs of the sums tend to a Gaussian, consistently with the standard CLT. On the other hand, when the system ...
متن کاملChaotic Trajectories in the Standard Map. the Concept of Anti-integrability
A rigorous proof is given in the standard map (associated with a Frenkel-Kontorowa model) for the existence of chaotic trajectories with unbounded momenta for large enough coupling constant k > k 0. These chaotic trajectories (with finite entropy per site) are coded by integer sequences {m i} such that the sequence b i = [mi+ 1 + mi_ 1 -2rail be bounded by some integer b. The bound k 0 in k dep...
متن کاملConservative chaotic flow generated via a pseudo-linear system
Analysis of nonlinear autonomous systems has been a popular field of study in recent decades. As an interesting nonlinear behavior, chaotic dynamics has been intensively investigated since Lorenz discovered the first physical evidence of chaos in his famous equations. Although many chaotic systems have been ever reported in the literature, a systematic and qualitative approach for chaos generat...
متن کاملChaotic Response and Bifurcation Analysis of a Timoshenko Beam with Backlash Support Subjected to Moving Masses
A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes technique and solved using the Runge–Kutta method. The analysis methods employed in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001